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Black Hole Entropy: Membrane Approach
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The “wall contribution” character of the Bekenstein–Hawking entropy in the brick-wall
model leads us to propose a new method of computing the entropy of a black hole.
In our model, the entropy is attributed to the dynamical degrees of the field covering
the two dimensional membranes just outside the horizon. A cutoff different from the
model of ’t Hooft is necessarily introduced. It can be treated as an increase in horizon
because of the space–time fluctuations. It is also shown that our method can be applied
to the nonstatic case, such as Vaidya–deSitter space–time, and the final result relies on
a time-dependent cutoff different from the brick-wall model.

1. INTRODUCTION

One of the important problems in theoretical physics is the investigation of
the statistical origin of black hole entropy. Although it is generally believed that the
final answer depends upon how perfect the theory of quantum gravity is; in many
works authors have used the semiclassical approach, such as the brick-wall model
(’t Hooft, 1985), and the entanglement entropy interpretation (Bombelliet al.,
1986; Frolov and Novikov, 1993). The latter is associated with the unobservable
modes hidden in the horizon. Our understanding of this interpretation is that the
entropy of the black hole can be attributed to the decoherence of the quantum fields
in the black hole background. It is shown that the entanglement interpretation is
closely related to the brick-wall model (Kabat and Strassler, 1994). If a black hole
originates from a star that is supposed to be in a pure state, there exists a perfect
relation between the internal and external modes. In the brick-wall model proposed
by ’t Hooft, the statistical property of external field outside the hole is investigated
in the brick-wall condition: The field is supposed to vanish near horizon and at
large distances. The result includes three parts: The first term is proportional to the
area of the horizon and depends on a cutoffη that stands for the proper distance
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between the wall and the horizon; the second term is the quantum correction to
black hole entropy with a logarithmically divergent term; the third term has the
same equation of the state of thermal radiation in flat space–time, this part is of
little relevance to black hole entropy. It is also shown by Rindler approximation
(Frolov and Fursaev, 1998; Li and Zhao, 2000) that the well-known Bekenstein–
Hawking(B–H) entropy proportional to the area of the horizon is only derived from
the contributions of the fields near the horizon. In other words, the B–H entropy
comes from the “wall contribution” (Mukohyama and Israel, 1998). It is easily
understood because the density of states becomes infinity at the horizon. Now let
us recall it through a static black hole as follows:

ds2 = − f dt2+ f −1 dr2+ r 2 dÄ2, (1.1)

and the entropy of a scalar field in this background is given by (Jing, 1998)

S= 2π2

45β3

∫
dθ dϕ

∫ L

r0

√−g

g2
t t

dr, (1.2)

where the relationgtt (r0) = 0 gives location the of horizon. In the original form of
the brick-wall model, the upper limit of the integral satisfies the inequalityL À r0.
This equation can give the quantum correction to black hole entropy besides the
Bekenstein–Hawking entropy. However, the B–H entropy is only derived from the
“wall contribution.” In other words, if we want to get only the part proportional
to the area of the horizon, the above integral can be done in the vicinity of the
horizon and the upper limit of integral may be replaced by another quantity. A
small quantityh is introduced andL is replaced byr0+ ε + h in Eq. (1.2)

S ' 8π3

45β3

∫ r0+ε+h

r0+ε

r 2 dr

f 2

= 8π3

45β3

∫ r0+ε+h

r0+ε

r 2 dr

4κ2(r − r0)2
, (1.3)

whereε ¿ h¿ r0. The functionf (r ) is expanded with Taylor series in the vicinity
of the horizon

f (r ) = f ′(r0)(r − r0) = 2κ(r − r0), (1.4)

whereκ = 1
2 f ′(r0) is the surface gravity near the horizon. The leading contribution

of (1.3) reads

S= 2π3r 2
0

45β3κ2ε′
, (1.5)
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where 1/ε′ = h/ε(ε + h); the Hawking temperatureβ−1 = κ/2π . We redefine the
cutoff as

η =
∫ r0+ε′

r0

dr√
2κ(r − r0)

=
√

2ε′

κ
. (1.6)

So we obtain

S= A

360πη2
. (1.7)

If η2 = 1
90π , one gets the B–H entropy, which is a quarter of the area of the horizon.

What we have just investigated is a three-dimensional (3-D) system, not a two-
dimensional (2-D) one. However, the “wall contribution” character of the entropy
is so strongly impressed on us that an idea arises naturally: Perhaps we can compute
the B–H entropy by investigating the statistical mechanics of the 2-D surface of
event horizon as a membrane in the 4-D space–time. In fact, the Euclidean path
integral method shows that the B–H entropy is derived from the surface term of the
gravitational action only. It is woeful that by this method we know nothing but the
thermodynamical entropy, and its statistical origin is unclear. It seems natural even
that we calculate the black hole entropy by investigating the statistical mechanics
of a 2-D membrane. In our opinion, the entropy of a black hole is attributable
to only the degrees of freedom of the fields covering theS2 surface of the event
horizon, derived neither from the inner fields nor from the outward radiation fields.

2. MODEL IN A STATIC HOLE

A spherical surface just outside the horizon is fixed atR= r0+ ε; ε is a
small quantity andd R= 0. The geometry of the surface is described by

ds2
3 = − f (R) dt2+ R2 dÄ2, (2.1)

and
√−g =

√
f R2 sinθ , g00 = − f −1,

(2.2)

g11 = 1

R2
, g22 = 1

R2 sin2 θ
.

Substituting (2.2) into the following equation of a massless scalar field,

1√−g
∂µ(
√−ggµν ∂ν8) = 0, (2.3)

We obtain

R2

f
∂2

t 8+ ∂2
θ 8+ cotθ ∂θ8+ 1

sin2 θ
∂2
ϕ8 = 0. (2.4)
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By using the WKB approximation with

8 = e−iωt+i S(θ ,ϕ), (2.5)

we can definepθ = ∂S
∂θ

, pϕ = ∂S
∂ϕ

. Substituting (2.5) into (2.4), we have

ω2R2

f
− p2

θ −
1

sin2 θ
p2
ϕ = 0, (2.6)

or

pϕ = ± sinθ

(
ω2R2

f
− p2

θ

)1/2

. (2.7)

Therefore, in phase space we obtain the number of modes

g(ω) = 1

4π2

∫
dθ dϕ

∫
dpθ dpϕ

= 1

4π2

∫
dθ dϕ

∫
dpθ sinθ

(
ω2R2

f
− p2

θ

)1/2

× 2

= 4

π

∫ ωR/
√

f

0
dpθ

(
ω2R2

f
− p2

θ

)1/2

= ω2R2

f
,

(2.8)

where thepθ integration goes over those values ofpθ that make the square root
positive. The free energy is given by

F = 1

β

∫
dg(ω) ln(1− e−βω) = −R2

f

∫
ω2 dω

eβω − 1
= −2ζ (3)R2

β3 f
, (2.9)

where the zeta functionζ (3)= 1.202. The entropy reads

S= β2 ∂F

∂β
= 6ζ (3)R2

β2 f
. (2.10)

We expand the functionf (R) with Taylor series near the horizon

f (R) = f ′(r0)(R− r0) = 2κε, (2.11)

andβ−1 = κ/2π , then (2.10) becomes

S= 3ζ (3)R2

2πβε
. (2.12)

The proper distance corresponding toε is given by

α =
∫ r0+ε

r0

dr√
f
≈
√

2ε

κ
. (2.13)

Then

S= 3ζ (3)R2

2π2α2
= 3ζ (3)A

8π3α2
. (2.14)
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The B–H entropy will be obtained by regulating the value of cutoff to make the
equalityα2 = 3ζ (3)

2π3 hold, which is different from that in the brick-wall model.
We also notice thatA = 4πR2 is not the area of the horizon but the area of

the surface fixed near the horizon. However, in our opinion,A can be regarded as
the “effective area” of the horizon when the fluctuations of the horizon are taken
into account. To understand this viewpoint, we assume the radius of horizon has a
fluctuationδ, then the mean of the area

〈A〉 = 4π < (r0+ δ)2 > = 4π
(
r 2

0 + δ2
)

> 4πr 2
0, (2.15)

That is to say, the horizon seems to have a nonzero thickness because of the
quantum effects of the fields and space–time itself. In other words, the horizon
may be dressed by a film of space–time foam (Scardigli, 1997). In fact, the horizon’s
length will increase when the back reaction to the hole is taken into account (York,
1985; Huanget al., 1993). If 〈A〉 is identical with 4πR2, the cutoff is naturally
provided by

δ2 = ε2+ 2r0ε. (2.16)

We make further investigations of cutoff, starting with another aspect.
Padmanabhan (Padmanabhan, 1999) has qualitatively pointed out that the cut-
off is necessary if the locally defined energyEloc of a mode is not allowed to
exceed the Planck energy by an arbitrary amount. But he doesn’t answer the puz-
zle arising from Eq. (2.12): whyε depends on the inverse temperature? We would
like to discuss his viewpoint in details. In classical space–time, local energy near
the horizon is given by

Eloc = ω√
f
' ω√

2κ(r − r0)
= ω

√
β

4πε
, (2.17)

whereω is the frequency of modes measured by the remote observer. According
to Wien’s displacement law, the maximum energy density of black body radiation
is at the specific mode with frequencyω = 2.822β−1. If the local energy has a
maximum comparable to the Planck energy,

Eloc ∼ 1, (2.18)

From (2.17) and (2.18), one can easily obtain

ε ∼ β−1. (2.19)

We see thatε is indeed temperature-dependent, which makes the black hole entropy
proportional to the area of the horizon. The fine computation shows thatEloc '
1.86, comparable to the Planck energy. In accordance with the general concepts of
the quantum theory in curved space–time, it is not allowable to ignore the fluctua-
tions of the space–time on the Planck scale. As previously discussed, the fluctua-
tions of the horizon influence the black hole entropy. The cutoff as a direct result of
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the horizon fluctuations is naturally introduced to avoid the divergence of entropy.
More than 40 years ago, Pauli and other authors (cited by Ford, 1999) suggested
that lightcone fluctuations could cancel the divergence of quantum field theory.
Preceding discussions seem to provide an evidence for the hypothesis. The fractal
spectrum of the horizon fluctuations is investigated by Sorkin (Sorkin, 1997).

3. APPLICATION TO A NON-STATIC HOLE

The merits of our model are evident. It can be applied to the system out of equi-
librium, such as the Vaidya–de Sitter(V–dS) space–time that has two horizons with
two correspondingly different temperatures. Furthermore, V–dS geomety is non-
static and describes an evaporating black hole. Its temperature is time-dependent,
and the horizon shrinks in the process of evaporation. We confront the difficulties
of concept when we try to apply the brick-wall model to the nonstatic case, at least
in the primal form based on the large scale thermodynamic equilibrium. However,
our model may be applied to it. According to our model, the entropy of the hole
is only attributable to the degrees of freedom of the fields covering the surface of
the horizon, where the thermodynamic equilibrium is well-defined. We can inves-
tigate the properties of the membrane by using statistical mechanics. It is noted
that the thermodynamic equilibrium between the hole and the external fields is not
necessarily assumed, whereas this postulate is the basis for the brick-wall model.

A nonstatic space–time is described by Vaidya–de Sitter metric

ds2 = −
(

1− 2m(v)

r
− 3r 2

3

)
dv2+ 2 dv dr+ r 2 dÄ2, (3.1)

which can be described as an evaporating black hole in de Sitter space–time. The
location of event horizonrh and radiation temperatureTH are determined by (Zhao
and Dai, 1992; Liet al., 1999)

1− 2 ṙh − 2m

rh
− 3r 2

h

3
= 0, (3.2)

TH = b

4π (1− 2 ṙh)
, (3.3)

whereṙh = drh

dv and b = 2m/r 2
h − 23rh/3. The variable temperature is meaning-

ful only in the vicinity of the horizon. The thermodynamic equilibrium is well de-
fined on the surface of the horizon because of the spherical symmetry of the space.

One can see from (3.1) and (3.2) that the infinite red-shift surface does not
coincide with the moving event horizon. We expect that there exists a frame where
these two surfaces are identical. We introduce the coordinate transformation

r ′ = r − rh,
(3.4)



P1: VENDOR

International Journal of Theoretical Physics [ijtp] PP072-296077 February 22, 2001 12:24 Style file version Nov. 19th, 1999

Black Hole Entropy: Membrane Approach 909

dr′ = dr− ṙh dv.

So (3.1) can be reduced to

ds2 = −
(

1− 2 ṙh − 2m(v)

r
− 3r 2

3

)
dv2+ 2 dv dr′ + r 2 dÄ2, (3.5)

wherer = r ′ + rh. An observer comoving with the event horizon is described by
dr ′ = 0. The physical meaning of this coordinate transformation is easily under-
stood. To cancel the effect caused by the motion of the horizon, we must choose a
frame comoving with the horizon. Similar to the preceding computations, a spher-
ical surface near the horizon is fixed atr ′ = ε; ε is a small quantity anddε = 0.
The geometry of the surface is described by

ds2
m = −

(
1− 2 ṙh − 2m(v)

r
− 3r 2

3

)
dv2+ r 2 dÄ2, (3.6)

And
√−g =

√
1(ε, v)r 2 sinθ , g00 = −1−1, g11 = 1

r 2
,

g22 = 1

r 2 sin2 θ
,

(3.7)

where1(ε, v) = 1− 2 ṙh − 2m(v)/r −3r 2/3. Substituting (3.7) into the same
equation of massless scalar field as (2.3), we obtain

r 2

1
∂2

v8 +
1√
1

∂v
(
r 2/
√
1
)
∂v8+ ∂2

θ 8+ cotθ ∂θ8

+ 1

sin2 θ
∂2
ϕ8 = 0. (3.8)

It is shown (Zhao and Dai, 1992) that the asymptotic behavior of the wave equation
near horizon is the standard form, using the tortoise coordinate. It means that a
reasonable solution of (3.8) is still assumed by WKB approximation,

8 = y(v)e−iωv+i S(θ ,ϕ), (3.9)

in the nonstatic space–time. It is noted that the approximation is only valid in the
vicinity of the event horizon. There is an additional term in (3.8) compared with
(2.4). To cancel the difference,y(v) must satisfy the following differential equation

r 2

√
1

ÿ+ ∂v
(
r 2/
√
1
)
ẏ = 0, (3.10)

whereẏ = ∂y
∂v . We definepθ = ∂S

∂θ
, pϕ = ∂S

∂ϕ
. Substituting (3.9) into (3.8), we have

ω2r 2

1
− p2

θ −
1

sin2 θ
p2
ϕ = 0, (3.11)
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or

pϕ = ±sinθ

(
ω2r 2

1
− p2

θ

)1/2

, (3.12)

which is similar to Eq. (2.7). What we do next is similar to the preceding compu-
tations. So the entropy of a Vaidya black hole is given by

S= 6ζ (3)r 2

β21
, (3.13)

whereβ is the inverse temperature in (3.3). We expand the1, with Taylor series,
near the horizon:

1 = 1− 2 ṙh − 2m

rh + ε −
3r 2

3
'
(

2m

r 2
h

− 23rh

3

)
ε = bε. (3.14)

Then (3.13) becomes

S= 6ζ (3)r 2

β2bε
, (3.15)

A new cutoff is redefined as

α′ =
∫ ε′

0

dr ′

(1− 2 ṙh − 2m/r −3r 2/3)1/2
' 2

√
ε′

b
, (3.16)

whereε′ = ε(1− 2 ṙh)2, and

4ε′

b
= α′2, (3.17)

Substituing (3.3) and (3.17) into (3.13), we have

S= 3ζ (3)r 2

2π2α′2
= 3ζ (3)A′

8π3α′2
, (3.18)

whereA′ = 4πr 2 ' 4πr 2
h . The cutoffα′ is time-dependent, sinceε is defined as

a constant. It may be a natural choice in nonstatic space–times.
In summary, we propose a model to compute the statistical entropy of the

black hole. In our opinion, the degrees of the fields covering the 2-D surface just
outside the horizon are responsible for the black hole entropy. A cutoff is necessary
to avoid the divergence of the entropy. We propose that it is not allowable to ignore
the fluctuations of the horizon because the locally defined energy of modes close
to the horizon may exceed the Planck energy. Therefore, the cutoff introduced can
be treated as the increase in horizon for the quantum fluctuations of space–time.
In other words, the horizon has a thickness of the Planck length. The thickness
is so small that we are not able to investigate its properties by using the quantum
theory in curved space. What we can only do is to know indirectly the statistical
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properties of the membrane by studying the fields propagating on its surface. By
using the membrane approach, the statistical entropy of Vaidya–de Sitter hole is
calculated and still proportional to the area of the horizon. The result relies on a
time-dependent cutoff.

An idea similar to the membrane approach is abstractly expressed (Calip and
Teitelboim, 1995; Calip, 1995), where the thermodynamics of the 2+1 black hole
(not the 3+1 case!) is discussed using Chern–Simons theory. Compared to it, the
picture of our method is simple but clear. A crucial difference is that our model
can easily be applied to the nonstatic hole.
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